
Assignment 4 – Solutions

MATH 3175–Group Theory

Problem 1. For each of the following group actions, we will determine their orbits and stabilizer
subgroups, and decide whether those actions are faithful, free, or transitive (or any combination
thereof).

(1) Let Sym(X) be the symmetric group on a set X, acting on X by Sym(X) ×X → X where
(σ, x) 7→ σ(x).

Given any x, y ∈ X, there is a bijection σ : X → X such that σ(x) = y (for instance, the
permutation that transposes x and y and leaves everything else fixed). Thus, Gx = X for all
x ∈ X and the action is transitive. Each stabilizer Gx is isomorphic to Sym(X \ {x}); thus,
if |X| > 1, the action is not free, but, nevertheless, it is faithful.

(2) The dihedral group G = Dn acts on the set of vertices of an n-gon, denoted by V =
{1, 2, 3, ..., n} in the usual fashion, with generators r the rotation acting as a cyclic per-
mutation (12 . . . n) and s the reflection acting as the transposition (12).

The orbit of any vertex is the whole vertex set V , and so the action is transitive. Each vertex
v is left fixed by at least one reflections, and thus has a non-trivial stabilizer, so the action
is not free. Nevertheless, no vertex is left fixed by all the non-trivial group elements, so the
action is faithful.

(3) The general linear group G = GLn(R) acts on Rn by matrix multiplication: GLn(R)×R→ R
where (M,x) 7→Mx.

The vector 0 ∈ Rn is fixed by this action; thus G · 0 = {0} and G0 = G, and so the action
is neither free, nor transitive. On the other hand, if v ∈ Rn \ {0} is a non-zero vector, then
G · v = Rn \ {0}, and Gv = {In}, where In is the identity n × n matrix, so the action is
both free and transitive on non-zero vectors. On the whole, the action is faithful, since the
intersection of all the stabilizers is {In}.

(4) Let G be a group acting on itself by left multiplication: G×G→ G where (a, b) 7→ ab.

Given any x, y ∈ G, there is a g ∈ G such that gx = y (simply take g = y−1x). Thus, Gx = G
and the action is transitive. Moreover, if gx = x, then g = e, and so Gx = {e}. This implies
that the action is free and thus, faithful.

(5) Let G be a group acting on itself by conjugation: G×G→ G, where (a, b) 7→ aba−1.

The orbit of b ∈ G is Gb = Cl(b), the conjugacy class of b, while its stabilizer is Gb = C(b),
the centralizer of b. Thus, the action is transitive if and only if there is a single conjugacy
class, which only happens if G is trivial. The action is free if and only if G is abelian and it
is faithful if and only if the center Z(G) is trivial.

(6) Let H be a subgroup of G. Then G acts on the set of left cosets G/H by left multiplication:
G×G/H → G/H where (a, bH) 7→ abH.

The action permutes the cosets of H, and thus is transitive: if aH and bH are two cosets,
then (ba−1) ∗ aH = bH. The stabilizer of a coset bH is the subgroup bHb−1; indeed, a ∈ GbH

iff abH = bH iff b−1ab ∈ H iff a ∈ bHb−1. Thus, the action is never free (unless H is trivial

1



to start with, which is the situation from case 4). Furthermore, the intersection of all the
stabilizers of cosets of H is the normalizer N(H); thus, the action is faithful if and only if H
is a normal subgroup of G.

(7) Let H be a normal subgroup in G; then G acts on G/H by conjugation: G × G/H →
G/H where (a, bH) 7→ aba−1H. Indeed, x ∗ (y ∗ (bH)) = x ∗ (yby−1H) = xyby−1x−1H =
(xy)b(xy)−1H = (xy) ∗ bH, and also e ∗ bH = bH, and so this is a valid group action.

If H is trivial, we are back to case 5. Otherwise, the orbit of a coset bH is the union of all
cosets cH where c runs through the conjugacy class of b, while the stabilizer GbH = {a ∈ G |
aba−1H = H} coincides with H, since H is normal. Thus, the action is neither transitive,
nor faithful (and hence, not free).

(8) Let f : G→ Sym(X) be a homomorphism; then G acts on X by G×X → X where (a, x) 7→
f(a)(x). Indeed, a ∗ (b ∗ x) = a ∗ (f(b)(x)) = f(a)(f(b)(x)) = (f(a) ◦ f(b))(x) = f(ab)(x) =
(ab) ∗ x, and also e ∗ x = f(e)(x) = idX(x) = x, and so this is a valid group action. In fact,
any group action arises in this fashion, so the orbits and stabilizers can be arbitrary (except
that they still need to satisfy the conclusion of the orbit-stabilizer theorem), while the action
need not be either free, transitive, or faithful.

Problem 2.

(1) Notice that 1331 = 113. Hence, G is a p-group. Then, by problem 4.1 it follows that the
center is non-trivial. �

(2) Consider the dihedral group D2k+1. Then, the order of this group is 4k+ 2. Assume we have
an element x 6= e in the center Z(D2k+1). Since x ∈ D2k+1, we can write x = risj (since r
and s generate D2k+1). So, if x ∈ Z(D2k+1), then

xr = rx =⇒ risjr = rrisj =⇒ ri+1sj = risjr =⇒ rsj = sjr.

We have two possibilities for j which occur; either j = 0 or j = 1. Assuming that j = 0, then
we obtain r = r, which is true. Alternatively if j = 1, then our computation demands that
rs = sr. Recalling the dihedral group relation rs = sr−1, we find that

sr = sr−1 =⇒ r = r−1 =⇒ r2 = e.

It cannot be that r = e since x 6= e, so instead we must accept that O(r) = 2. However, this
implies that 2 | 2k+1, which is absurd since 2k+1 is odd by definition. Hence, we must have
that j = 0 =⇒ x = ri for some 0 ≤ i < 2k + 1. We again make use of the dihedral group
relation

xs = ris = sr−i = sr2k+1−i,

that shows that x commutes with s only if

i = 2k + 1− i =⇒ 2i = 2k + 1,

which is clearly a contradiction. Therefore, we must reject our assumption that Z(G) is
non-trivial.
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Problem 3. Let G be a group and let H be a subgroup of G.

(1) Assume that H ⊂ Z(G). Let a ∈ G, h ∈ H. Then

h ∈ Z(G) =⇒ ah = ha =⇒ aha−1 = h =⇒ aha−1 ∈ H,

showing that H is a normal subgroup of G. �

(2) We will begin by showing the case where H = Z(G), so suppose that

Inn(G) ∼=
G

Z(G)
∼= 〈aZ(G)〉

for some a ∈ G. Because inner automorphisms are simply conjugations, the cyclicity of Inn(G)
asserts that for every g ∈ G, there exists some n ∈ Z such that

gxg−1 = anxa−n

for any x ∈ G. In particular, a ∈ Z(G) by the computation

gag−1 = anaa−n = a =⇒ ga = ag.

With this established, we see that

gxg−1 = anxa−n = x =⇒ gx = xg,

so G is Abelian. Now suppose instead that H ≤ Z(G) and that G/H is cyclic (G/H a group
by part (1)). By invoking the correspondence and 3rd isomorphism theorems, we observe
that

Z(G)

H
≤ G

H
=⇒ G/H

Z(G)/H
∼= G/Z(G)

is cyclic as the quotient of a cyclic group. We conclude that G is Abelian by our first argument.

Problem 3.2 (Alternate) Suppose that H ≤ Z(G) and G/H is cyclic. First, observe that by
part 3.1, H E G, so G/H forms a group. Next, note that G/H cyclic =⇒ G/H = 〈aH〉 for some
a ∈ G.

Now consider an element of G, say g. Then, gH = (aH)k = akH for some k ∈ Z. Also recall that
g is equivalent to ak modulo H if and only if (ak)−1g ∈ H, that is, a−kg = h for some h ∈ H,
implying we can write g = akh. We will use this fact to show that G is Abelian.

Let g1, g2 ∈ G. We have seen above that we can write g1 = ak1h1 and g2 = ak2h2 for some
h1, h2 ∈ H, where a is the representative of the left coset that generates the cyclic group G/H. So,
g1g2 = ak1h1a

k2h2. Now, since h1, h2 ∈ Z(G), they commute with all elements in G, and so

g1g2 = h1a
k1ak2h2 = h1a

k1+k2h2 = h1a
k2ak1h2 = ak2h2a

k1h1 = g2g1.

This shows that G is Abelian. �

Problem 4.

(1) Let p be prime, and let G be a p-group, so that |G| = pn for some n ≥ 1. We wish to show
that the center Z(G) is non-trivial. If n = 1, i.e., G has prime order, then G is cyclic, and
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thus Abelian, i.e., Z(G) = G, and so the center is non-trivial. So we may assume |G| = pn,
for some n ≥ 2.

Consider now the conjugation action of G on itself. Then the conjugacy class of an element
a ∈ G is equal to the orbit Ga of this action (i.e., CG(a) = Ga here). Also, as we have seen
in the proof of the class equation, Ga = CG(a), so CG(a) is a subgroup of G by Problem 1,
and thus we can use the orbit stabilizer theorem. Consider the class equation,

|G| = |Z(G)|+
∑
i∈I

[G : CG(ai)],

where {ai}i∈I is a set of representatives for the non-trivial conjugacy classes of G. Since these
conjugacy classes are non-trivial, we must have |Gai| > 1 (they contain more than just ai).
This implies that [G : CG(ai)] = |Gai| > 1. Also, by Lagrange’s theorem we have

|G| = [G : CG(ai)] | CG(ai)|.

So, taking these two results into consideration, it must be the case that [G : CG(ai)] divides
|G| = pn, and also [G : CG(ai)] 6= 1. Thus, [G : CG(ai)] = pk, for some 1 ≤ k < n (since
n ≥ 2). Applying this to the class equation ,we get

pn = |Z(G)|+
∑
i∈I

pki =⇒ pn −
∑
i∈I

pki = |Z(G)| =⇒ p

(
pn−1 −

∑
i∈I

pki−1

)
= |Z(G)|.

(We can factor out a p and still obtain p times an integer, since all the powers of p are
greater than one). Thus, p divides |Z(G)|, and since |Z(G)| ≥ 1 (since it contains the identity
element), we have that |Z(G)| ≥ p, and thus Z(G) is non-trivial. �

(2) We now use part a) to show that every group of order a square of a prime is Abelian. First,
let’s prove that Z(G) is a subgroup of G:

• Closure: let a, b ∈ Z(G), then ax = xa, bx = xb for every x ∈ G. So, (ab)x = abx =
axb = xab = x(ab), so ab ∈ Z(G).

• Inverses: let a ∈ Z(G), then ab = ba for every b ∈ G. Thus, a−1ab = a−1ba =⇒ b =
a−1ba =⇒ ba−1 = a−1b. So, a−1 ∈ Z(G).

• Finally, Z(G) 6= ∅ since it contains the identity.

Thus, the center is a subgroup of G, and, in fact, a normal subgroup of G: this follows
immediately from the definition of the center.

Assume now that |G| = p2, for some prime p. Since Z(G) is a subgroup of G, its order
divides the order of G, that is, |Z(G)| divides p2. Furthermore, by part a), |Z(G)| 6= 1, and
so |Z(G)| ≥ p. We have two cases to consider:

Case 1: |Z(G)| = p2. In this case the center is the entire group, so every element in the
group commutes with every other element of the group. Thus, G is Abelian.

Case 2: |Z(G)| = p. Since Z(G) is a normal subgroup of G, the quotient G/Z(G) is a group.
We will show that this quotient group is cyclic. By Lagrange,

|G/Z(G)| = [G : Z(G)] =
|G|
|Z(G)|

=
p2

p
= p.
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Thus, by (Homework 2, Problem 2a), the group G/Z(G) is cyclic. Since Z(G) ⊂ Z(G),
we can now apply Problem 3b), and conclude that G is an Abelian group. But this
implies that G is Z(G), which contradicts our assumption that |Z(G)| = p, so this case
can never happen. Thus, we have shown that G is Abelian. �

Problem 5. Because cycle shape determines the conjugacy class in Sn, we will provide a cycle
shape as indicative of each conjugacy class in S6. The letters a, b, c, d, e, and f will take on values
1 through 6 inclusive but will never take the same value within a given permutation. Notice that
the sum of the conjugacy class sizes is 6! = 720.

Shape Size of Conjugacy Class

()

(
6

0

)
= 1

(ab)

(
6

2

)
= 15

(ab)(cd)

(
6
2

)
·
(
4
2

)
2!

= 45

(ab)(cd)(ef)

(
6
2

)
·
(
4
2

)
·
(
2
2

)
3!

= 15

(abc)

(
6

3

)
· 2! = 40

(abc)(def)

(
6
3

)
·
(
3
3

)
2!

= 40

(abc)(de)

(
6

3

)
· 2! ·

(
3

2

)
= 120

(abcd)

(
6

4

)
· 3! = 90

(abcd)(ef)

(
6

4

)
· 3! ·

(
2

2

)
= 90

(abcde)

(
6

5

)
· 4! = 144

(abcdef)

(
6

6

)
· 5! = 120
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